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strength and ductility demand in relation to
velocity spectrum
Steven Y. W. Kuan' and Noel D. Nathan"

ABSTRACT

Recent analytical studies on filtered earthquakes such as the Mexico
city 1985 event have shown that inelastic displacements can be signifi-
~antly greater than _the e}astic ones. It 1s found that the response of a
yielded structure 1s highly dependent on its strength, the ainitial
structural period, and the characteristics of the velocity spectrum of the
ground motion. An equation relating inelastic response to the spectral

velocity spectrum 1s made based on energy principles to explain both the
equal- and unequal-displacement phenomena.

INTRODUCTION

Current practice in seismic-resistant design allows structures to
yield during severe earthquakes provided that sufficient ductility is
available for the large deformations. By assuming pure plastic behaviour
in the inelastic range, the response of the structure can be idealized as a
bilinear force-displacement plot as shown in Fig. 1.

It has been shown that, for a structure of any strength, the maximum
inelastic displacement during an earthquake is very close to the displace-
ment that would have been attained if the structure had remained elastic
(Blume, Newmark, Corning, 1961). This idea is generally accepted and is

incorporated in most design codes including the National Building Code of
Canada 1990.

The "equal-displacement" phenomenon, however, is based on response to
‘ypical earthquakes that have very low predominant periods of vibration.
Kecent earthquakes in Mexico City and Loma Prieta have demonstrated 1.:he
dmging effects of filtered earthquakes. This type of earthquake }}as_; its
Predominant period shifted to higher values by the local soil condl'filons.
The acceleration response spectra for Taft S69E 1952, representing a
tYPiCal earthquake, and for Mexico City SCT EW 1985 are shown together in
*. 2. The effects of these different characteristics on the inelastic
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INELASTIC RESPONSE ENVELOPES FROM VELOCITY SPECTRA

F i

The relationship between the

| £ _ rorce Reduction Factor and the desired
ductillty dep@}ﬂdiﬁt:lptl}i] the iLlle 1".5_'11'-1.5.' 18 fesponse en\j@ltjpe’ ags shown by F]g N
ThefEfore a method of fj_f'_—'rI'_'t.—?“i‘ﬂ'l'LI’l.LI"lj_L_‘; the position of the latter would be
uSerl.

As shown in Frig. /, the response of an inelastic structure is repre-
cented aS 4 bilinear curve. An "equivalent elastic" structure can be

defined by a Strﬁlght ljfuznaﬁ slope less than the actual stiffness, reach-
ing the same ma:-:lmui"n ;i;etlgct&.-an as the inelastic structure. The slope of
this line, OI the effective stiffness" of the equivalent elastic struc-
rure, 1S obtained by setting the area under the curve equal to that under
+he inelastic curve. The period of this equivalent elastic structure then
suggests the period shift, as the real structure becomes inelastic in the

-

earthquake.

The areas referred to above represent the maximum energy of deforma-
rion stored in the structure during the earthquake; by conservation of

energy, this 1s es;entially equal to the maximum kinetic energy achieved by
+he system, which 1s proportional to the square of the velocity. Thus, the

1oad-displacement diagrams are 1ndicative of the maximum velocities reached
by the systems.

Applying these relationships to the original elastic structure and the
aquivalent elastic structure, and noting the relationship of the latter to
the inelastic structure, one is able to express the Force Reduction Factor

in terms of the ductility and the spectral velocities before and after the
period shift:

VI
VZ

™4

:(:

Y2p-1 (1)

This equation shows the influence of the velocity response spectrum on
the inelastic response envelope. If the velocity response spectrum 1s
horizontal, so that V. equals V,, the inelastic response envelope 1s given
by curve H on Fig. 8, and the Force Reduction Factor is given by

R = Y2u-1 (2)

This is the well-known equal-energy criterion: it implies that the energy
under the inelastic force-displacement curve is equal to that under the
original elastic structure curve. If the velocity response spectrum slopes
downwards, as it does for "typical" earthquakes, then V, < V,, the Force
Reduction Factor is increased, and the inelastic response envelope 1s seen
to lie closer to the initial stiffness line. The equal-displacement
Criterion applies to a line of this type. If the spectrum slopes upw?rdsi
48 1t frequently does when the ground motion has been ‘flltere_d by loca
8ite conditions, then V, > V,, R is reduced, and the inelastic response

envelope moves further from the initial <tiffness line, outside that Lot
the equal energy case.
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